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Abstract
A similarity metric based on the low-level content of
images can be used to create a visualisation in which
visually similar images are displayed close to each other.
We are carrying out a series of experiments to evaluate
the usefulness of this type of visualisation as an image
browsing aid. The initial experiment, described in this
paper, considered whether people would find a given
photograph more quickly in a visualisation than in a
randomly arranged grid of images. The results show that
the subjects were faster with the visualisation, although in
post-experiment interviews many of them said that they
preferred the clarity and regularity of the grid. We
describe an algorithm with which the best aspects of the
two layout types can be combined.

1. Introduction

Improvements in storage and networking technology
have made it possible for large collections of images to be
made available in digital form. In order to facilitate access
to these collections, it is necessary to carry out some
indexing of their content. With textual document
collections, conventional information retrieval algorithms
and systems can be used to index them according to the
words they contain, enabling searches based on these.
With digital images, the task is more difficult, as they do
not contain individually meaningful units like words.
They may of course be given textual annotations
manually, allowing them to be indexed conventionally,
but this is a very time-consuming process, and the
resulting annotations may be highly subjective.

Ideally, it would be possible to extract high-level
semantic content from images automatically, and use this
to index them objectively. This is of course a very
difficult problem, and current systems for automatic
indexing and retrieval of images can make use of only
low-level visual features, such as colour and texture.
There is some evidence that visual properties are
important to people when searching for images. For
example, a study by Jose et al. [6] found that designers
searching for photographs to illustrate a brochure for

tourists reported that they often had a reasonably well-
defined “mental image” of a photograph that might satisfy
their requirement.

Users are expected, however, to express their
requirement in a visual form, and this can be much more
difficult than constructing a textual query, and less likely
to yield meaningful results. For example, a user looking
for textual documents about jet aeroplanes would be sure
to include words like “ jet”  and “aeroplane”  as query
terms. However, searching for photographs of jet
aeroplanes, in current content-based image retrieval
systems, would require the user to either attempt to
characterise a prototypical image of a jet with a sketch or
colour percentages, or to select a suitable example image
by browsing the collection. The system would then return
to the user the set of images that it measures to be most
visually similar to the given image. However, because of
the low-level nature of the features used to judge
similarity, the system could be just as likely to return (for
example) pictures of birds in flight, or mountains, as
pictures of jet aeroplanes.

These difficulties in query construction mean that it
becomes very important for systems to provide good
support for browsing of images. Information visualisation
is often proposed as a means of helping the user to gain an
overview of a set of data objects, thus assisting browsing.
Mutually similar objects can be arranged close to each
other, enabling the user to see how they are related with
regard to the similarity metric used.

Rubner [11] has proposed that a low-level content-
based image similarity metric can be used to create
visualisations of sets of images. Thumbnail versions of
the images can be placed directly at the appropriate points
in the visualisations, so that the variation in their visual
content is easy to see. We have implemented software to
generate such visualisations. For example, Figure 4 (in the
colour plate) shows our visualisation of 100 images of
Kenya. The combination of the metric and the layout
algorithm has uncovered a natural structure in the set,
where images of people are visible at the top left, images
of wildlife on the right, and buildings are at the bottom.

Of course, because of the low-level nature of the
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metric, these visualisations are still subject to many of the
same limitations as a purely query-based system.
However, users at least are not forced to attempt to sketch
their “mental image” , but can instead simply allow their
gaze to move into the areas of the visualisation where the
images most resemble it. For example, when searching for
aeroplanes, a user’s eye would probably be drawn to
pictures containing a lot of blue sky.

No experimental evaluation of this type of
visualisation had been carried out, so we set out to
investigate its utility for different image browsing tasks.
As an initial experiment, we decided to consider a purely
visual search task, since one would expect that this would
be the type of task most favoured by the combination of a
visualisation and a content-based similarity metric. If the
visualisation proved itself in principle, we could then
move on to tasks involving a more general requirement,
putting the usefulness of content-based similarity metrics
on trial as well as that of the visualisation.

The first experiment was designed in order to establish
whether users would find a given image more quickly in a
visualisation than in a baseline, random arrangement. This
simulates a situation where the user is trying to find a
particular image that he or she has seen before, rather than
searching with a general requirement in mind.
Experiments by Jacobs et al. [5] have shown that a
person’s sketch from memory of a given image can often
be good enough for a content-based retrieval system to
match it to the required image. However, it has not been
shown that people are actually willing to make the effort
to create such sketches in real situations. People have an
excellent memory for recognition of photographs [14,
p.192], and so one might expect that it would be easier for
them to recognise a desired image than to recall and
sketch it, particularly if they are not confident about their
artistic ability. Of course, in this experiment we are
asking the subjects to retrieve the images from their short-
term memory, rather than the long-term memory that
would be used in a real situation. However, images may
be remembered in a similar way in both short- and long-
term memory [14, p.198]. Colours, for example, are
always remembered in a more simplified form than that in
which they were originally seen.

Before explaining the experiment, we first describe the
similarity metric and layout algorithm we used to create
our visualisations. It would have been possible to choose
any metric and any algorithm, but those used represent
our own research in each of these areas. Future studies
could compare different metrics and different layout
algorithms in this context.

2. The image similarity metric

Researchers in the information retrieval and image
processing communities have proposed a large number of
image similarity metrics. These are used in image

retrieval systems to find the images in a collection that are
most visually similar to a given query image.

Such metrics can be qualitatively partitioned into those
that use a global summary of image content and those that
use a region by region comparison. Metrics based on
global image properties generally use colour histograms,
as well as some representation of the texture present in the
image (e.g. Virage1). The relative orientation of regions is
not reflected in this kind of metric. Systems actively using
segmented image regions (e.g. QBIC2 and NETRA3)
permit richer query generation. The relative importance of
region colour, shape, location and texture in the metric are
set at query time. The metric employed in this paper is
designed to reflect both global image properties and the
broad spatial layout of regions in the image.

An image is segmented into regions with broadly
homogeneous colour properties [13]. Regions have
descriptors for colour, colour variance, area, shape,
location and texture. Regions are then classified as either
large (with an area greater than 0.1% of the total image
area) or small. The large regions are further classified as
either textured or smooth, and the small regions as
regularly or irregularly shaped (based on their
isoperimetric area [12]).

An image summary is then created as follows. The
image is partitioned into nine equal areas, in the obvious
way. Sets of four global colour histograms (for large
smooth regions, large textured regions, small regular
regions, and small irregular regions) are made for each of
these nine areas, and the largest (dominant) region in each
of the nine areas is recorded. The histograms are
normalised by image area.

The chi-squared statistic [7] is used to determine the
distance between like colour histograms across image
pairs. The distance between dominant regions in
corresponding ninths of each image is given by the
Mahalanobis distance in RGB colour space. The metric is
then a weighted sum of the above distances.

The metric gives a balance between global image
colour properties and local region based properties.
Experiments should help to fine tune the relative
weighting of its different components.

3. The layout algorithm

Given a similarity metric for a collection of objects,
such as images, how does one arrive at a layout that is a
faithful representation? Multidimensional scaling (MDS)
achieves this objective by treating inter-object
dissimilarities as distances in some high dimensional
space, and approximating them in a low dimensional
output configuration. Two-dimensional layouts are most
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useful here, as thumbnail versions of the images can be
placed at the corresponding points.

The MDS algorithm [1] that was used in this
experiment emulates a fully connected spring system with
one anchor point for every object in the collection. The
relaxed length of a spring connecting two points is taken
to be the dissimilarity between the corresponding pair of
objects. The actual length of the spring is the distance
between its two anchor points. The algorithm attempts to
arrive at a minimum energy state (an optimal
configuration) by reducing the disparity between actual
and desired lengths. This process is iterative and
terminates when the amount of improvement becomes
negligible.

During a single iteration of the algorithm, all points in
the configuration are considered one at a time, and their
locations improved. This is achieved by applying a single
Newton-Raphson iteration to the gradient of the energy
function at the point currently considered. Successive
applications of this procedure will converge to a
configuration that is a root of the first derivative of the
energy function. The topology characteristics of the
energy function guarantee that this is a minimum.

Numerical minimisation techniques can only be
expected to give a local minimum, and this algorithm is
not an exception. However, it does have a tendency to
avoid particularly bad minima, by allowing energy-
increasing changes to the configuration, especially early
on in the minimisation process. In any case, it is always
useful to run the algorithm a few times and only take the
best layout.

4. The experiment

Our hypothesis was that, in general, subjects would
find a given target image in a set more quickly if that set
is arranged according to visual similarity, than if it is
arranged randomly. The method we adopted was to
display a full-size target image to the subject, remove it
from the screen, and then measure how long he or she
takes to find it in a set of thumbnail images. This process
was repeated through a series of trials.

The image set was laid out in one of two different
ways. In the random condition, the set was arranged in a
random order, in a grid. A grid was used instead of a
purely random layout, since current applications usually
display images in this way. In the MDS condition, the set
was arranged in a similarity-based visualisation (as in
Figure 5, in the colour plate).

4.1. Subjects

16 subjects were recruited from among the students
and staff of the University of Cambridge. All had either
normal or corrected-to-normal vision, with no colour
blindness (self-reported).

4.2. Apparatus

48 sets of 80 images were randomly selected from a
20,000-image stock photograph collection, available from
Corel on CD-ROM. Target images were presented to the
subjects at 768x512 pixels, and thumbnails were
displayed at 96x64 pixels. Only landscape-oriented
images were used, because in pilot studies it became
obvious that it was possible to “ filter”  the image set
according to the orientation of the target. For each of the
48 sets of images, a visualisation and a random
arrangement were created, and each was saved in a large,
maximum quality JPEG file. Subjects were tested one at a
time, all on the same PC, with a 17-inch monitor set at
1280x1024 resolution. A Java program was used to
display images and record timings.

A trade-off between thumbnail size and number of
images per set was necessary, since the more images that
are displayed on screen at once, the smaller they have to
be to avoid obscuring each other. This is especially true of
the MDS layouts, which have an irregular structure that
results in thumbnails overlapping. The attributes were
fixed after experimenting with several pilot subjects. It
would have been possible to avoid overlap by
implementing a mechanism to bring an image to the front
when the user moves the mouse over it. However, rather
than complicate the experiment, we simply decided to
only use target images that had more than 70% of their
area visible in the layout, so that the subjects were never
asked to find an image that was badly obscured. This
meant that approximately 10% of the images in each
MDS layout could not be used as targets.

4.3. Design

The dependent variable was the time taken (in
milliseconds) between the set of images appearing and the
subject clicking on the target image. Any trials where the
subject failed to click within the time limit, or clicked on
the wrong image, were regarded as missing data. The
independent variable was the way in which the image set
was arranged, and the experiment was within-subjects
(repeated measures), so that all of the subjects received
both conditions of this variable. The design was balanced,
so half of the subjects received the MDS condition first,
and half received the random condition first. Each subject
saw the same layouts, but the order of these within each
condition was randomised, so that there would be no
effect of ordering. The 48 trials in each condition were
presented in four consecutive blocks of 12, with breaks
between blocks. The subjects also received one “practice”
block at the start of each condition.

Since some images always seem to “stand out”  from a
set more than others, we expected that an image’s
distinctiveness would play an important part in how
quickly it was located, regardless of the layout type.



Because this is difficult to measure, we did not attempt to
control it as a variable, and instead decided that it should
be randomised. Distinctiveness would then be a source of
random variation, and should not affect the overall
outcome. Thus, the target image for each layout was
selected at random for each subject (from those at least
70% visible in the layout, as described in the previous
section).

We also expected that the screen position of a target
image in a layout would have some effect on the time
taken to find it. Firstly, subjects may adopt a search
strategy that favours a particular area of the screen, such
as a “scanning”  (top left to bottom right) strategy.
Secondly, images that are placed at a larger distance from
the user’s initial mouse position will take longer to reach.
This was also left as a source of random variation, dealt
with by the randomised selection of targets. To give some
consistency across all of the trials, subjects had to move
the mouse to the centre of the screen before the set of
images appeared, and were asked not to move it again
until they had found the target image with their eyes.

4.4. Procedure

Subjects were asked to read a set of instructions, and
were then given a practice block of whichever condition
they were receiving first, followed by the four blocks of
that condition. They then received the practice block and
four real blocks of the other condition, as described
above. In a single trial, a subject was shown a target
image for 10 seconds. It was then removed from the
screen, giving the subject 20 seconds to find it (as quickly
as possible) in a set of 80 thumbnail images, and click on
it using the mouse. The timeouts were set after pilot
studies. As soon as an image was selected, or when the
time ran out, the correct image in the set was highlighted.
This gave the subjects some feedback about their
performance, and was intended to help them remain
interested in the task.

Subjects were told that they were being timed, and that
this was being done in order to compare the two layout
methods to each other. They were not told how the
layouts were created, to avoid giving them the impression
that the experimenter had any investment in one type
doing better than the other. In particular, this meant they
were not told that visually similar images were arranged
together in the MDS layouts, but it was assumed that they
would notice this during the practice block.

In order to provide qualitative data, the subjects were
also asked to fill in a post-experiment questionnaire. This
asked them, in an open-ended way, to describe what sort
of searching strategies they had used for each of the
layouts, as well as what they thought were the advantages
and disadvantages of each layout method, and to explain
which one they preferred. They were also asked if some
kinds of target image were easier or more difficult to find

than others. The whole procedure took about an hour per
subject.

5. Results

An analysis of variance (ANOVA) was performed,
with time as the dependent variable, and layout type and
subject as independent variables. The times were not
normally distributed, and so a log transform of the time
was used in its place, as is standard. The results showed
that subjects were significantly faster with the MDS
layout than with the random layout (p<0.0001), with a
mean time of 4311 milliseconds for MDS, versus 5107
milliseconds for the random layout. In the post-
experiment questionnaires, we were surprised to find that
7 of the 16 subjects said that they had not noticed that
visually similar images were arranged together in the
MDS layout. Yet these subjects were just as fast as those
who did notice, so we concluded that the visualisation
must have guided them in the direction of the target,
without them being consciously aware of it.

12.3% of the trials had to be regarded as missing data,
because the subject either failed to select an image within
the time limit (9.3%), or selected the wrong image
(3.0%). This constituted 14.5% of the random trials and
10.2% of the MDS trials. The subjects said that when they
had failed to find an image, it was often because it looked
different to the way they had remembered it. In particular,
reducing an image to the size of a thumbnail may result in
the appearance of remembered objects changing
dramatically. Those subjects who were consciously
making use of the grouping of visually similar images in
the MDS layouts said that sometimes the target thumbnail
did not appear in the area of the screen that they expected.
Consequently, they would scan the area repeatedly before
realising that the target was just outside it. This may be
because the metric or layout algorithm has not succeeded
in arranging the images according to the way a human
would arrange them, or because the subject’s memory of
the image is different to its actual appearance.

5.1. The effect of distinctiveness and position

All of the subjects definitely felt that some target
images were easier or more difficult to find than others. In
particular, they said that the easiest images to find were
those containing large areas of bright, saturated, or
contrasting colour, especially close-ups. The most
difficult targets were those containing dull colours and
showing distant objects, for example landscapes or city
scenes. The subjects noted that this had affected their
search strategies, reporting that with both layout types
they had first quickly scanned the image set to see if the
target “ jumped out”, and only if that failed did they search
in a more methodical way.

The experiment design attempted to deal with the
distinctiveness of target images by giving each subject a



different random set of target images, so that it would
appear only as random variation. We felt it would be
interesting to attempt to retrospectively introduce some
measure of distinctiveness into the statistical analysis. An
image’s distinctiveness cannot be quantified in an
absolute way, as it is always relative to the set of images
in which it is presented: the most distinctive images are
likely to be those which are most visually dissimilar to all
of the others. The distinctiveness of an image was thus
estimated quantitatively as the average similarity
(according to the metric) of the image to each of the other
images in its set. For the image sets used in the
experiment, the measurement seems to be in broad
agreement with the subjects’  opinions. For example,
close-ups of brightly coloured flowers or exotic fruits are
usually measured as highly distinctive. Despite the
crudeness of this measurement, once it is introduced into
the analysis as an independent variable it is highly
significant (p<0.0001), showing that distinctiveness does
indeed have an effect on search time. This did not affect
the significance of layout type.

We also attempted a similar retrospective analysis of
the effect of a target’s screen position, introducing the
distance in pixels of the target from the centre of the
screen as an independent variable. This showed, again at a
high level of significance (p<0.0001), that images
appearing closer to the centre of the screen were located
more quickly. Again, the significance of layout type was
not affected.

5.2. The problem of image overlap

It is generally expected that objects will be represented
in information visualisations by points. However, when
the objects have on-screen representations that are any
bigger than a single pixel, as is the case with image data,
there is a risk of overlap between them, resulting in some
objects being partially or wholly obscured. Before we
conducted the experiment, we did not expect overlap to be
much of a problem. Images that overlap are likely to be
very visually similar, and we were not asking subjects to
find any badly obscured images.

However, in the post-experiment questionnaire all of
the subjects said that the overlap in the MDS layouts had
given them problems, making it difficult to see the edges
of images and sometimes resulting in a remembered detail
being obscured. Five of the subjects expressed a
preference for the random grid, citing lack of overlap and
ease of systematic scanning (along rows or down
columns) as their reasons. We realised that it should be
possible to adapt the “pure” MDS layout so that the
images are arranged in a more regular way, thus
combining the advantages of the two techniques.

6. Grid algorithm

A visualisation of a MDS configuration will not suffer

from overlap if the separation between object centres is
greater than the object diameter. This observation led to
development of an algorithm that guarantees a minimum
amount of separation by forcing object centres to lie on a
grid. A MDS configuration and desired grid size form
input to the algorithm. An optimal allocation of points in
the configuration to grid cells is the goal of the algorithm.
This task is particularly hard for dense grids, where all or
most of the cells will become occupied. As an example of
the desired effect, Figure 6 (in the colour plate) shows the
80-image layout of Figure 5, transformed to fit into a
12x12 grid. This leaves 64 cells empty, and results in
much of the original structure of the layout being
preserved.

Of course, a similar effect could be achieved by
adapting a MDS algorithm to work in a discrete rather
than the continuous domain. However, there are a number
of advantages of having it as a separate post-processing
step. An exact grid size can be enforced, since continuous
co-ordinates have been established in advance by MDS,
and are therefore fixed. Moreover, different grid sizes can
be tried for a single configuration, and their quality
directly compared. This also applies to dense grids, which
would no doubt be very difficult to deal with inside a
MDS algorithm (a situation resembling a sliding tiles
puzzle). The grid algorithm can also be used in
conjunction with configurations from other sources.

In the initial stage of the algorithm, continuous co-
ordinate values are mapped into a discrete range. Since
only square grids are used, the grid length determines how
many unique locations exist in each dimension. Naturally,
it is possible for two points to be mapped to the same grid
cell. Many strategies could be implemented to resolve
this. Since we wanted to avoid introducing another
numerical optimisation process, we adopted a greedy
approach. This will only give an approximate solution.
However, the computational cost is low, and the amount
of introduced error can be controlled by adjusting the grid
length.

Figure 1: An example of spiral search. The grey
triangle represents the set of all possible

positions of point p that would result in this
particular orientation of the spiral. The black

circle denotes the optimal cell o for this point.



Each point p in the configuration is considered in turn.
If the optimal grid cell o is unoccupied, p is allocated to
it. Otherwise, the closest empty cell e is found by
performing a spiral search starting from cell o. The
second location visited by the spiral is the second closest
cell to point p, taking Euclidean distance into account.
This determines the orientation of the spiral in an
unbiased way. Figure 1 is an example of a spiral search
when o is below and to the left of p (the remaining three
cases are analogous). If there are at least as many grid
cells as points this procedure is guaranteed to find e. Once
this happens three strategies can be adopted, as illustrated
in Figure 2:
a. p is allocated to e (basic strategy)
b. the point allocated to o is relocated to e, and p is

allocated to o (swap strategy)
c. points allocated to cells on the line from o to e are

relocated outwards by one cell, and p is allocated to o
(bump strategy)
The order in which points are considered is important

with each strategy. It should be independent of
permutations of the input configuration. The Minimum
Spanning Tree (MST) of the original data that was subject
to MDS defines such a unique order [1]. Shortest MST
edges link most closely related data objects. Considering
the corresponding points first in the basic strategy will
ensure that they occupy neighbouring cells. The same
effect would be achieved by considering them last in the
swap and bump strategies.

Figure 2: Examples of the basic, swap, and
bump strategies (from left to right). In each, the
solid black circle denotes the optimal cell, and
the empty circle shows the closest empty cell.

To determine the best strategy to use in the algorithm,
testing was performed on a MDS configuration of 400
images. For each grid length tested, all strategies, in both
ascending and descending MST order (a total of six
possibilities) were applied. In each case maximum and
average error were noted. The amount of error in
positioning each image was defined to be the distance
between its optimal and actual grid cell. The distance
between two grid cells was taken as either the horizontal
or vertical grid separation, whichever was greater. The
test ranged over all grid lengths from 20 (the smallest
possible for this collection), up to the smallest length that

gave no error for all possible strategies.
Figure 3 is a plot of maximum error for each grid

length and strategy. The difference between applying a
strategy in descending and ascending order is very slight.
However, there are definite differences between
strategies. The bump strategy gives best results for small
grids, which will be densely populated with objects. The
basic strategy appears to be marginally better for larger,
more sparsely populated grids. The swap strategy
consistently gives the highest maximum error. This is
because a single point can be relocated more than once
with this strategy, increasing the amount of error. This is
also true for the bump strategy, and becomes apparent for
larger grids, where it is equivalent to a swap strategy, as
can be discerned from Figure 3.

The average error is very similar for each grid length
and strategy. Bump appears marginally better for smaller
grids. This is due to the tendency of this strategy to spread
error over many points, rather than positioning some
items optimally and delegating potentially large error to
others. The descending bump strategy seems best overall,
as it minimises both maximum and average error for
dense grids, which are most useful as they give large
separation between objects. This strategy will also
preserve distances between most closely related objects.

The algorithm’s space requirement is O(m2), where
n number of points in the configuration
m grid length, m2≥n

Then, assuming:
O(n) time taken by initial discretisation
O(m2) time for initialising the grid
lk=k-1 number of operations to find an empty cell

(length of spiral search for kth point)
rk=O(√k) number of operations to perform bump

(radius of spiral for kth point)

the worst-case running time, using the bump strategy, is
O(n)+O(m2)+∑(lk+rk)=O(m2)+∑(k -1)=O(m2)+O(n2)

7. Discussion and further work
The experiment described here has shown that laying

out a set of random images according to their visual
similarity can help people to find a given target image
more quickly than when those images are laid out in a
random order, in a grid. This was intended as an initial
investigation into the potential usefulness of a
visualisation for image browsing tasks. The task in this
experiment was purely visual, simulating a search for a
specific photograph, which the user has seen before and
wants to find again.

It is not clear how common this type of search is in
practice. Enser’s analysis of the requests received by a
major photograph library [3], for example, does not
mention any for specific images.  However, the study was
done in a context where experienced search staff locate



images matching a verbal request submitted by clients
who have very little knowledge of the collection. He did
not study to what extent the trained searchers make use of
their memory of particular images from previous
searches.  One might expect that specific requests will
become more common as technology enables more
people to search for images directly, and become more
familiar with the collection.

 In interviews carried out as part of an earlier study of
how people organise their personal photographs [8],
locating a specific image was the most commonly
mentioned search task. People are very familiar with their
own photographs, and do not normally want to use them
to satisfy a general requirement; a specific photograph,
associated with a particular memory, is usually enough.
We are currently integrating a visualisation facility into
our system for organising personal photographs, Shoebox,
and we plan to study people’s use of different searching
and browsing tools in this context.

As discussed earlier, people who are searching for
images with only a general requirement in mind may
often have a “mental image” of a photograph that would
meet their needs. One could argue that this experiment
has also simulated looking for images based on a mental
image, where the picture is just given to the subject rather
than being conjured up in his or her own imagination.
However, since a mental image is likely to be much less
well-defined than a memory of a particular photograph,
and since requirements often evolve and change during
the search process [4], we are reluctant to make such a
claim based on these results. We have since carried out a
second experiment, where the subjects were given a
general verbal description of images to find, and were
expected to create their own mental image.   The results
showed that, in general, people found matching images
more quickly with an MDS layout than a random layout.
More details can be found in a separate paper [9].

The issue of scale has to be addressed: our studies have
looked only at sets of 80 or 100 images, but of course
there are thousands of images in real collections. In cases
where no annotation or organisation of the collection
exists, the search would first have to be narrowed down
with simple visual queries, as Rubner [11] suggests. It is
also possible to attempt a hierarchical visual organisation
of the entire collection, as described by Chen et al. [2].
However, this sort of hierarchical grouping would have to
use a metric that mapped very closely to users’  own
perceptions of visual similarity, otherwise they may
become lost, having descended the wrong branches of the
hierarchy.

Of course, for most image searching tasks it is crucial
that some sort of annotation exists, so that the user knows
exactly what a photograph actually depicts.  Image
libraries have already made a lot of investment in creating
well-annotated collections.  For example, to produce the

layout of images of Kenya shown in Figure 4 (in the
colour plate), it was first necessary for a human indexer to
classify all of these photographs under the heading
“Kenya” . Without such a categorisation, there would be
no way of knowing that these images were of Kenya, and
it would certainly be impossible for any visual indexing
system to identify them as such.

A designer working on a tourist guide to Kenya might
want to look for photographs of the country, to use as
illustrations. He or she could find the “Kenya”  category in
a pre-classified image collection, or perhaps enter a
textual query in an annotated collection. In a conventional
system, the images would either be displayed in some
default order, or ranked in order of their similarity to a
query. A visualisation like that of Figure 4 could be used
as an alternative way of displaying the images, and might
help the designer to get a feel for all of the different types
of photographs of Kenya that are available in the
collection, and choose those which are most visually
suitable for the guide. We are currently examining the use
of a visualisation for arranging the contents of a single
category in a pre-organised collection, or the results of a
text-based query.

As well as examining different image browsing tasks,
we could also attempt to determine experimentally the
best possible way in which to create the visualisations.
Rogowitz et al. [10] created multiple MDS visualisations
of the same set of images, using different similarity
metrics, in order to qualitatively compare them. They
compared content-based metrics with the similarity
judgements of human subjects. It is also possible to use a
text-based metric, with a collection whose images have
been annotated. It will be very interesting to see which of
these metrics produces the most useful visualisations. It is
possible that metrics which work well in image retrieval
systems may not be the most appropriate for use in a
visualisation, and vice versa.

8. Conclusions

Information visualisations created using content-based
metrics of image similarity offer some promise as tools
for image browsing. The experiment described in this
paper showed that people can locate a specific image
more quickly in a visualisation than in a randomly
arranged image set. Further experiments will provide
more insight into the usefulness of this type of
visualisation in support of a wider range of image
browsing tasks.

Thumbnails are used to represent images in a
visualisation, and since these take up more than a single
pixel of screen space, arranging them according to the
original configuration of points produced by the layout
algorithm leads to some overlap. The subjects in our study
disliked this, expressing a preference for a more regular
arrangement that would eliminate overlap. We developed



an algorithm to create grid-like versions of the
visualisations, thus combining the best aspects of both
approaches.
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Figure 3: Maximum error for all strategies and directions of the grid algorithm.



Figure 4: A visualisation of 100 images of Kenya, showing that an underlying visual structure in the
set can be uncovered by this method.

Figure 5: A visualisation of one of the sets of
images used in the experiment.  48 different sets

of 80 randomly chosen images were used.

Figure 6: The images of Figure 5, forced into a
12x12 grid.  Overlap is removed, while structure

is largely preserved.


